If it's not what You are looking for type in the equation solver your own equation and let us solve it.
225x^2+1=30
We move all terms to the left:
225x^2+1-(30)=0
We add all the numbers together, and all the variables
225x^2-29=0
a = 225; b = 0; c = -29;
Δ = b2-4ac
Δ = 02-4·225·(-29)
Δ = 26100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{26100}=\sqrt{900*29}=\sqrt{900}*\sqrt{29}=30\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{29}}{2*225}=\frac{0-30\sqrt{29}}{450} =-\frac{30\sqrt{29}}{450} =-\frac{\sqrt{29}}{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{29}}{2*225}=\frac{0+30\sqrt{29}}{450} =\frac{30\sqrt{29}}{450} =\frac{\sqrt{29}}{15} $
| 6x^2-15x+2=2x^2+10-4 | | -5n=5-6n | | 6(k-4)=-120 | | 3y+y+-15y-(-8y)+16y=-13 | | 2(x-12)=8x | | 5c=-60 | | -20=4n-6n | | −13=51+4m−2m | | 8-x=3x+(x-4) | | x+4=-7x+5 | | (4m+2)/6=m/3 | | (2x-5-1-x)(x)=0 | | 2(5x-3-4=3x+4 | | (2x-5-1-x(x))=0 | | 7a-3a+2a-a=15 | | 3t+122=5t+6 | | 5+2(y+4=5(y-3)+10 | | 2x1=23 | | -r-8/2=14 | | 9=b-11 | | 2x+100=-20 | | 2x+6/4=5x/8 | | 2(x-4)+2x=-x-2 | | 39.57=8g+3.89 | | 8-12x=8x-24 | | 5x2+15x−50=0 | | (2x-5)-(1-x)=0 | | 3(x-4)+6=4(3x+4) | | -16=-2t | | 4(6-1)=-4+b | | 7-4.9t=1.5+7.6t | | 1−2k-3=2-3−4k |